Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution.
نویسندگان
چکیده
To study the evolutionary effects of polyploidy on plant gene functions, we analyzed functional genomics data for a large number of duplicated gene pairs formed by ancient polyploidy events in Arabidopsis thaliana. Genes retained in duplicate are not distributed evenly among Gene Ontology or Munich Information Center for Protein Sequences functional categories, which indicates a nonrandom process of gene loss. Genes involved in signal transduction and transcription have been preferentially retained, and those involved in DNA repair have been preferentially lost. Although the two members of each gene pair must originally have had identical transcription profiles, less than half of the pairs formed by the most recent polyploidy event still retain significantly correlated profiles. We identified several cases where groups of duplicated gene pairs have diverged in concert, forming two parallel networks, each containing one member of each gene pair. In these cases, the expression of each gene is strongly correlated with the other nonhomologous genes in its network but poorly correlated with its paralog in the other network. We also find that the rate of protein sequence evolution has been significantly asymmetric in >20% of duplicate pairs. Together, these results suggest that functional diversification of the surviving duplicated genes is a major feature of the long-term evolution of polyploids.
منابع مشابه
Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis.
Gene duplication at various scales, from single gene duplication to whole-genome (WG) duplication, has occurred throughout eukaryotic evolution and contributed greatly to the large number of duplicated genes in the genomes of many eukaryotes. Previous studies have shown divergence in expression patterns of many duplicated genes at various evolutionary time scales and cases of gain of a new func...
متن کاملA recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome.
The Arabidopsis genome contains numerous large duplicated chromosomal segments, but the different approaches used in previous analyses led to different interpretations regarding the number and timing of ancestral large-scale duplication events. Here, using more appropriate methodology and a more recent version of the genome sequence annotation, we investigate the scale and timing of segmental d...
متن کاملDivergence in Enzymatic Activities in the Soybean GST Supergene Family Provides New Insight into the Evolutionary Dynamics of Whole-Genome Duplicates
Whole-genome duplication (WGD), or polyploidy, is a major force in plant genome evolution. A duplicate of all genes is present in the genome immediately following a WGD event. However, the evolutionary mechanisms responsible for the loss of, or retention and subsequent functional divergence of polyploidy-derived duplicates remain largely unknown. In this study we reconstructed the evolutionary ...
متن کاملProtein Subcellular Relocalization of Duplicated Genes in Arabidopsis
Gene duplications during eukaroytic evolution, by successive rounds of polyploidy and by smaller scale duplications, have provided an enormous reservoir of new genes for the evolution of new functions. Preservation of many duplicated genes can be ascribed to changes in sequences, expression patterns, and functions. Protein subcellular relocalization (protein targeting to a new location within t...
متن کاملDuplicate Gene Divergence by Changes in MicroRNA Binding Sites in Arabidopsis and Brassica
Gene duplication provides large numbers of new genes that can lead to the evolution of new functions. Duplicated genes can diverge by changes in sequences, expression patterns, and functions. MicroRNAs play an important role in the regulation of gene expression in many eukaryotes. After duplication, two paralogs may diverge in their microRNA binding sites, which might impact their expression an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 16 7 شماره
صفحات -
تاریخ انتشار 2004